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The Hodgkin-Huxley model of nerve pulse propagation relies on ion currents through specific
resistors called ion channels. We discuss a number of classical thermodynamic findings on nerves
that are not contained within this classical theory. In particular striking is the finding of reversible
heat changes, thickness and phase changes of the membrane during the action potential. Data on
various nerves rather suggest that a reversible density pulse accompanies the action potential of
nerves. Here, we attempted to explain these phenomena by propagating solitons that depend on the
presence of cooperative phase transitions in the nerve membrane. The transitions., however, are
strongly influenced by the presence of anesthetics. Therefore, the thermodynamic theory of nerve
pulses suggests an explanation for the famous Meyer-Overton rule that states that the critical
anesthetic dose is linearly related to the solubility of the drug in the membranes.
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1. Introduction

The description of electrical phenomena in nerves is among the first biological problems
studied in physics. Galvani'® noticed that the legs of dissected frogs made active
movements when their nerves were connected to a battery. He called this phenomenon
“animal electricity”. After learning about these experiments Volta'® stated that nerve
pulses are electrical conduction phenomena. Helmholtz performed the first
measurements of the propagation velocity of nerves. He found a value of about 30 m/s in
the nerves from frog muscle. In the second half of the 19 century Ostwald™ and others
developed the theory of osmosis and attempts were made to relate the flux of ions
through the nerve membranes to the propagating action potential®. This finally resulted
in the model by Hodgkin and Huxley' from 1952 that is the presently accepted model for
the nerve pulse. This model relies on ionic currents through ion-selective objects (ion
channel proteins) and the membrane capacitor. In the context of their model, the
conductance of these objects displays rather complex voltage and time dependences that
enter the differential equation via a set of empirical parameters. Those parameters are
taken from experiment but do not yet find a satisfying theoretical justification.
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Even though Hodgkin and Huxley' originally did not specify the ion-conducting objects
it was clear from the line of argument that these objects were expected to be specific
proteins called ion-channels. In 1976, Neher and Sakmann using the patch clamp
technique described such channels microscopically”. Nowadays, many investigators all
over the world investigate the properties of ion channels. In 1998, MacKinnon and
collaborators crystallized the potassium channel and suggested a pathway for the
potassium through a pore within the protein®. Thus, seemingly the Hodgkin-Huxley
model finds support in independent experiments.

The model by Hodgkin and Huxley is a purely electrical description based on conductors
(ion channels and the cytosol of the nerve axon), and on a capacitor, which is the lipid
membrane. It does not contain any thermodynamical variable except the membrane
potential. Entropy, temperature, pressure and volume do not play a role. There is,
however, strong evidence that the phenomena during the action potential are not purely
electrical. It has been observed by a number of investigators that the dimensions of the
nerve changes in phase with voltage changes and that the nerve exerts a force normal to
the membrane surface’*?**'* Further, during the action potential lipid membrane
markers change their fluorescence intensity and their anisotropy®. Most striking,
however, is the finding that there are reversible changes in temperature and heat during
the action potential“'153830‘33. While the Hodgkin-Huxley model' contains resistors that
should generate heat during the flux of ions, the reversible release and re-absorption of
heat does not find a satisfactory explanation within this model".

Recently, Heimburg and Jackson'"" proposed that the action potential is rather a
propagating density pulse (soliton), therefore an electromechanical rather than a purely
electrical phenomenon. This corresponds to a localized piezoelectric sound pulse within
the nerve membrane. Such a model is able to explain most of the thermodynamical
findings on nerves and results in the correct propagation velocity of about 100 nv/s for a
myelinated nerve. Interestingly, Hodgkin and Huxley themselves proposed the possibility
that the nerve pulse is a propagating mechanical wave®’.

Anesthesia is a phenomenon that seems to be closely related to the action of nerves. Since
the standard model of nerve action is based on the action of ion channels much of the
research has been dedicated to investigate the influence of anesthetics on such proteins.
However, an old finding by Meyer** and Overton’® states that the action of anesthetics is
linearly related to their solubility in membranes. This includes the noble gas Xenon.
Although ion some ion channels are influenced by some anesthetics, there is no
quantitative correlation with the well-documented Meyer-Overton rule’.

In this paper we briefly discuss some of the historical findings on nerves, including the
Hodgkin-Huxley model and thermodynamic data on nerves. It is shown that the Hodgkin-
Huxley theory does not describe the thermodynamics of the nerve pulse correctly.
Instead, the propagation of a density pulse is shown to explain in a quantitative manner
many features of the nerve pulse, including density, fluorescence anisotropy and heat
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changes. Finally, we show that such a description leads to a satisfactory quantitative
explanation of general anesthesia.

2. The Hodgkin-Huxley Model

In the Hodgkin-Huxley model' the propagation of a voltage pulse is the consequence of
ion currents through the membrane and along the nerve axon. The electrochemical
potential (Nernst potential) across the nerve membrane balances the ion concentration
differences on both sides of the nerve axon. The transient opening of voltage dependent
ion channels leads to a related transient voltage change that can propagate. Most of the
data on which the Hodgkin-Huxley model is based originate from voltage-clamp
experiments on giant squid axons where the trans-membrane voltage is kept constant
along the whole length of the axon.
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Figure 1: Left: Action potential adapted from the original paper of Hodgkin and Huxley'. Right top: Electrical
currents in the Hodgkin-Huxley model through ion channels. Right bottom: Equivalent circuit picture replacing
ion channels by resistors and the membrane as a capacitor.

The relation for the ion current through the membrane under voltage clamp conditions is
based on an equivalent circuit picture that is schematically shown in Fig. 1. Describing
ion channels by resistors and the membrane as a capacitor one obtains

aUu
[m=Cm?"'gk(U'EK)"'gMz(U"ENa)"‘gL(U—EL) (2.1)

where I, is the current through the membrane, C,, is the capacitance of the membrane
(typically on the order of 1 uF/cmz). The Ex, En, and E are resting potentials that depend
on ion concentrations. The gg, and gy, are the conductances of K-channels and Na-
channels, the g, describe the leak currents. The conductances are no constants but rather
complicated functions of time and voltage, ge=gi(V,t) and gn=gna(V,1), that have been
empirically fitted by Hodgkin and Huxley' using many parameters that are not justified
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theoretically. Therefore, the seemingly simple eq. (1) is in fact very complicated and all
the mysteries of the observed phenomena are hidden in the functional dependences of the
conductances on time and voltage.

The trans-membrane current in eq. (1) is given as the sum of a capacitive current and an
Ohmic current. The eapacitive current is given by '

jczi(cm.y)= Cmd_U+ Ud&. (2.2)
dr dt dr

A closer look at the right hand side of eq. (1) indicates that the capacitive current used by
Hodgkin and Huxley consists only of the C,-dU/dt term and that the capacitance C,, was
assumed to be constant. Therefore the U-dC,/dt term has been neglected. This is probably
not correct since we demonstrate in the next section that the thickness of nerves changes
during the pulse. Note in particular that the function dC/dt carries the same units as the
conductances, g. For this reason it may not always be trivial to distinguish currents

through resistors and capacitive cutrents in an experiment during a propagating pulse®,

To arrive at a wave equation for the nerve axon Hodgkin and Huxley assumed that the
total current is the sum of the trans-membrane current and the current along the axon. A
further ad-hoc assumption is that a propagating solution exists that fulfills a wave
equation. Hodgkin and Huxley' arrived at following differential equation for the
propagating nerve pulse:

a U oU | s
=C, +g (U-E)+ g, (U-E, (2.3)
2R I " o1 (U~ E)+ gy (U-E,,)

where a is the radius of the axon and R; is the resistance of the cytosol within the nerve.
This equation introduces a dependence of the pulse propagation on the nerve radius. The
elements of the propagating pulse are summarized in Fig. 2 that shows the equivalent
circuits as an in-line arrangement of many local equivalent circuits as shown in Fig. 1.
Due to the voltage and time dependence of the conductances in eq. (2.3) the differential
equation can only be solved numerically. For the squid axon that only contain K- and
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Figure 2: Equivalent circuit picture of a propagating voltage pulse. Currents flow along the nerve axon and
across the axonal membrane through resistors and should produce a net heat dissipation.
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Na-currents Hodgkin and Huxley found a convincing agreement between the calculated
and the observed pulse shape.

One immediate implication of the Hodgkin-Huxley model is that the ion currents through
the nerves should produce heat. Electrical currents through resistors generate heat,
independent of the directed of the ion flux. The heat production in such an experiment
therefore ‘should always be positive if the Hodgkin-Huxley model is taken seriously and
the analogy of ion ‘currents through protein pores and Ohmic currents is assumed to be
correct. The heat dissipation should be related to the power of a circuit through the
resistor, i.e. dQ/dt=P=U-I= g"'I,,’>0 for each of the conducting objects in all phases of
the action potential. In the next section we will show that this is not in agreement with the
experiment.

3. Thermodynamics of Nerve Pulses

The Hodgkin-Huxley model' is a purely electrical theory. It is based on equivalent
circuits and makes use of capacitance, resistors and iomic currents. It is not a
thermodynamic theory. It does not explicitly contain temperature and heat, and also not
other thermodynamic variables as pressure, volume and the chemical potentials of
molecules dissolved in the membrane (e.g. anesthetics). However, there are many reports
in the literature that indicate that additional to the electrical response of nerves other
variables also change, for example the thickness, the enthalpy and heat content of the
nerve. In the following we briefly discuss some of these data.

3.1. Thickness and forces

L Tasaki and collaborators have published several studies on the mechanical and
thermodynamic properties of various nerves”*'***_ For all nerves that they investigated
they found that the action potential (i.e. the voltage pulse) is accompanied by changes in
the dimensions of the nerve. In Fig.3 (left) it is shown that the voltage pulse of a squid
axon is exactly proportional to the change of its thickness™. In the example this thickness
change is about 1 nm. Further, the same authors showed that during this pulse a
considerable force acts on a piston that was brought into contact with the nerve surface.
The force on that piston (0.01 cm® cross section) was shown (o be about 2nN at the
voltage peak maximum.

3.2. Fluorescence changes, optical changes and alterations in lipid state

During the action potential not only thickness and pressure on a piston change but also
the state of the membrane as measured by the fluorescence changes of lipid dyes. Tasaki
and coworkers** found that in various nerves under the influence of the action potential
the fluorescence intensity changes proportional to the voltage pulse (see Figure 4). In the
same paper they showed that the fluorescence anisotropy of these markers also change
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Figure 3: Mechanical changes during the action potential. Left: Force on a piston during the action potential in
a squid axon. The solid line represents the voltage changes, the dotted curve the force. Right: During the nerve
pulse in a squid axon the thickness of the nerve changes proportional to the voltage. Data adapted from Iwasa
& Tasaki , 1980.

(data not shown). The fluorescence anisotropy is a measure for the rotational mobility of

the fluorescence markers. A lower anisotropy indicates faster movement, whereas a high
anisotropy indicates slow movement. Since the fluorescence anisotropy changed during
the voltage pulse Tasaki and collaborators® concluded that the viscosity of the membrane
changes during the nerve pulse. Note that they published this paper prior to the ‘fluid
mosaic model’ by Singer and Nicholson® from 1972 that established the present view of
the biological membrane. The concept of phase transitions in lipid membranes was not
established. One should conclude from the fluorescence data that significant changes in
the order of the lipid membrane take place. The evidence for phase transitions during
nerve pulses has been discussed in more detail by Kinnunen and Virtanen™ and Tasaki
and coworkers'®*,
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Figure 4: Voltage changes (top traces) and fluorescence changes (bottom traces) for 4 different fluorescence
markers and nerve preparations. They are exactly in phase. 1. Squid giant axon and 8-anilinonaphtalene-1-
sulfonate (ANS). 2. Crab leg nerve with fluorescein isothiocyanate (FIT). 3. Squid axon with FIT. 4. Crab leg
nerve with lysergic acid diethylamide (LSD). From ref. 4. The data were taken as a proof for changes of the
viscosity within the membrane during the action potential.
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In this context it should be noted that also changes in light scattering and turbidity

accompany the action potential that clearly cannot be related to membrane voltages39’4°.

3.3. Reversible heat changes and their meaning

The most. striking thermodynamic findings in nerves during the action potential are
reversible temperature changes and corresponding changes in the heat released during the
nerve pulse. The first to carefully describe the heat changes was A. V. Hill who published
a series of papers in the 1920’s and 1930’s. Abbott et al.'* showed that the heat release
during the first phase of the action potential is nearly exactly compensated by a heat
uptake in the second phase of the action potential. This effect was found in non-
myelinated'*'>*** and in myelinated'** nerves. Interestingly, Hill and collaborators
found that the reversible heat release in myelinated nerves originates from the complete
nerve and not only from the nodes of Ranvier'. They suggested that most likely the
complete membranes of the myelinated nerves contribute to the heat release and that one
should therefore consider an active role of the myelin sheet to the nervous impulse.
Saltatory conduction that is the textbook picture for pulse propagation in myelinated
nerves, in contrast, attributes a special role to the nodes of Ranvier. Other authors
reproduced such finding, e.g. Howarth et al.'’, Ritchie & Keynes® or Tasaki and
coworkers™>*, Tt has to be acknowledged that these experiments are difficult and the
observed temperature changes are small (of order 100uK).

T T ¥ T
20 40 60 80 100 120

time [ms]

T

['m-e] Lysuap A3a0ud J0jdeded

o

Figure §: Reversible heat change during the action potential. Left: The square of the voltage (the energy of
charging a capacitor) is proportional to the heat of the nerve pulse. The heat, however, is much larger than the
capacitor energy. The heat during the nerve pulse returns to the baseline indicating that the nerve pulse is
adiabatic (does not generate net heat after completion of the action potential). Data on garfish olfactory nerve
adapted from Ritchie & Keynes®™,

One important result demonstrated in Fig. 5 shows the integrated heat release during the
action potential and the square of the voltage changes related to the free energy of the
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membrane capacitor’®. These two functions were found to be qualitatively nearly
identical. However, the heat reversibly released during the action potential was several
times larger than the energy of the capacitor such that it can be excluded that the
reversible heat release is explained by the charging of the membrane capacitor. This is
the only semi-reversible element in the Hodgkin-Huxley model' (see discussion). Further,
the heat ‘after the whole pulse returns to the baseline in phase with voltage changes
meaning that after the nerve pulse no net heat was dissipated within experimental error.
Control experiments indicate that the heat is not lost by thermal conduction into the
environment but is rather reabsorbed in the second phase of the action potential.

The reversible heat release is a remarkable and very meaningful finding. It suggests that
the physical processes underlying the nerve impulse are reversible processes. The
Hodgkin-Huxley model, however, is based on irreversible processes, in particular on the
exchange of potassium and sodium ions along ion gradients. The model does not contain
any true reversible processes. Even if the membrane capacitor was reversibly charged this
would not result in a reversible heat change unless the flux of the ions would also be
reversed, which is not the case within the framework of the model. Taking the equivalent
circuit picture seriously, the flux of charges through a resistor should rather result in a
heat release independent on the direction of the flux of the ions. The flux of potassium
and of sodium both should dissipate heat. This is obviously not in agreement with the
thermodynamic results obtained from real nerves. The finding of changes in lipid state
and in thickness does not find a satisfactory explanation within the Hodgkin-Huxley
model.

4. Propagating Density Pulses

In the following we show that the thermodynamic findings described above find an
explanation if one assumes that the action potential consists of a propagating density
pulses. Heimburg and Jackson'' showed that one could obtain stable propagating density
pulses in cylindrical lipid membranes provided that the membrane exists in a physical
state slightly above a melting transition. In the following we outline the underlying basis
of this model.

4.1, Melting transitions in biological membrane

Many biological membranes display melting transitions slightly below body temperature.
In Fig. 6 the melting transition of native E.coli membranes (including all their proteins)
are shown. One finds a pronounced lipid-melting peak slightly below body temperature
that is affected by growth temperature of the bacteria, by hydrostatic pressure and pH*'.
Further, one finds several protein unfolding peaks slightly above body temperature. It is a
remarkable fact in itself that Nature chooses living systems (o exist so close to the
cooperative transitions of their molecules, including membranes, proteins and DNA. The
underlying theme of this paper is that this is of major biological relevance.
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Figure 6: Left: Schematic picture of the melting process in lipid membranes and the associated change in the
specific heat capacity. Right: Melting profile of the membranes of £.coli grown at 37°C (adapted from ref. 11).
The growth temperature is indicated as dashed line. The peaks below growth temperature belongs to the melting
of lipid membranes, the peaks shaded in grey above the growth temperature are attributed to protein unfolding.
The melting transitions of such membranes display a melting temperature, Ty, a melting
enthalpy, AH, and a melting entropy, AS, given by AS=AH/T,,. Further, volume and area
of the membrane change during the melting process. For the model lipid DPPC
(dipalmitoyl phosphatidylcholine) that is the major lipid component of lung surfactant
one finds: Tp,=314.2 K, AH=35 kJ/mol, AS=111.4J/mol-K, AV/V=0.04 and AA/A=0.246.
These values give the order of magnitude but vary between different lipid species.

4.2. The relation between heat capacity and compressibility

The enthalpy, specific volume and specific area changes in a lipid melting transition can
be written as

H(T)= Hy(T)+ AH(D),
V(T) = Vy(T)+AV(D), wh
A(T) = A(T)+AA(T).

Hy(T) being the temperature dependent enthalpy of the pure gel phase and the function
AH(T) is the excess enthalpy of the transition. Similarly, Vi(T) and A(T) are the
temperature dependent specific volume and area of the gel phase. AV(T) and AA(T) are
the excess volume and area changes associated with the melting transition. It has been
found experimentally that the volume and area changes in the chain melting transition are
proportional to the changes in enthalpy™'°

AV(T) =y, AH(T), 4.2)
AA(T) =y ,AH(T)
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where the constants 1y=7.8-10"°m*N and y,=0.89nVN are approximately the same for
various artificial lipids and for biological membranes. Using the fluctuation dissipation
theorem it is easy to show that excess heat capacity changes within the lipid melting
transition is proportional to the excess isothermal volume and area compressibility:

KUY = KLy (D) + AR(D) = Ky (D) + L2

<L Ac,(1)
}/ZT 4.3)
KA = K8y (D + MK =ty (D+ il (1)

The heat capacity can easily be measured in calorimetry. The functions Kro and ¥r*
are the temperature dependent compressibilities of the pure phases that have to be taken
from literature. One can see that both volume and area compressibilities assume maxima
at the temperature where the heat capacity is maximum.
The adiabatic compressibilities that are relevant for sound propagation can be determined
when the isothermal compressibilities are known. They assume the form'’
2 2
e AR R B
Ve, \dT ), Ve, \dT )y

where the heat capacity cp is that of the membrane plus the aqueous environment that
transiently absorbs heat from the membrane upon compression. If the compression is
very slow, cp will be very large and therefore in the limit of very slow compression
ks =Kk and Ks"~k;*. It has been found experimentally that the adiabatic compressibility
obtained for periodic perturbations with a frequency w=5MHz can well be determined if
the heat capacity is chosen be the total heat capacity of the lipid membrane alone. It is
obviously smaller than the isothermal compressibility. Therefore one has to conclude that
the adiabatic compressibility in general is frequency dependent and thus dispersion is
found. The frequency dependence of relaxation phenomena in the lipid melting transition
has also been documented in experiments’' and been justified theoretically*. It is also
obvious from eqs. (4.1) — (4.3) that the compressibility is a nonlinear function of the
membrane density"’.
If the adiabatic compressibility is known one can calculated the sound velocity, e.g. for
the lateral sound velocity within the membrane plane

1 (4.5)
-
K5 P
The lateral area density of the membrane and the enthalpy are related. Therefore the
adiabatic compressibility is a function of the area density of the membrane, and it follows

that the sound velocity is a nonlinear function of the density that close to the lipid melting
transition can be expanded into a power series such that

¢ =c;+ p(Ap*)+q(Ap” )z +... (4.6)

c=
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where ¢, is the sound velocity in the fluid phase of the membrane. p and q are parameters
that have to be determined from the known dependence of the sound velocity on the
density. For unilamellar DPPC membranes slightly above the transition one finds
experimentally that cy=176.6 m/s (the lateral sound velocity in the fluid phase at low
frequencies), p=-16.6c,"/p" and q=79.5¢,7(po")* (for details see ref. 11). Here, py’=
4.035-10°g/m’ is the lateral area density in the fluid phase of the membrane slightly
above the melting point. Similar values were found for lung surfactant or native E.coli
membranes.

4.3. Propagating solitons

Let us now consider the propagation of a density pulse in a cylindrical membrane along
the axis x. The hydrodynamic equation for the propagation of such a density pulse in the
presence of dispersion is'""? is given by
A Jd| ,d a*
X

EY A

describing the changes of the lateral membrane density as a function of time and space.
The second term is chosen ad hoc to describe the frequency dependence of the sound
velocity in a linear way using a parameter h (for details see ref. 11). This parameter is the
only one that has not yet been determined in an experiment. We will see below that the
only role of the parameter h is to set the linear scale of the propagating pulse.
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Figure 7: Soliton profile for a soliton velocity of v=0.651 ¢, calculated for h=2m®%s®. This soliton has a
maximum amplitude of Ap®/p™. Tts width is approximately 10 cm.
We have shown above that the sound velocity is a function of the area density, p™.

Introducing eq. (4.6) into eq. (4.7) we obtain

a—zApA:i{«%pApﬂq(Apﬂ% )iApA:'—biApA @3)
JZZ aX 0 9X 9X4
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and after the coordinate transformation z=x-v-t (introducing the propagation velocity, v)
we arrive at the time independent form describing the shape of a propagating density
excitation:

P

27

This equation has an analytical localized solution:

(P
€ = Vi

1+ 1+2 ’u—cosh -z ll—ﬁz
=V h o

Such localized solutions are known as solitary waves or solitons. A typical soliton profile
is shown in Fig. 7. The minimum velocity vy, in eq. (4.10) is given by

. 4
Ap? 9 (& + pAp” +g(Ap™ +...)—a—ApA —b—a—4ApA. 4.9)
- dz dz 0z

Ap*(2) = i;i (4.10)

-

_ |2 P (4.11)

Vinin = CO _6_'

q
Vmin Of a soliton in DPPC membranes is found to be vy;,=115m/s, which is very close to
the velocity of the action potential found in myelinated nerves. The minimum velocity is

the velocity of the soliton when its amplitude reaches the maximum value

|P| 4.12)

AP =
q

corresponding to an overall density change of ApmA/poA=0.21. Solitons with larger
density change do not exist.

The total area change when going through a melting transition is Ap.,*/po*=0.246 (for
DPPC). Thus. at maximum amplitude the soliton forces the lipid membrane by about
85% through the melting transition. This will cause a transient heat release corresponding
to 85% of the melting enthalpy (which is on the order of 35kJ/mol or =13 kT per lipid).
Simultaneously, the thickness of the membrane will change by 85% of the thickness
change in the transition from fluid to gel (7.4 A for DPPC). Since the soliton is linked to
changes in lipid state the fluorescence anisotropy will also change in an experiment. It is
well known that the anisotropy (related to the rotational mobility) is higher in the gel
phase then in the fluid phase. Exactly these changes have all been found in real nerves
under the influence of the action potential*' (see sections 3.1, 3.2 and 3.3). The order of
magnitude of these changes matches the data found for such nerves.

4.4. Electromechanical coupling

It seems evident that the solitons described above have many similarities with a real
nerve pulses and can well describe their thermodynamic properties. However, the action
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potential is known to be a propagating voltage pulse with a net voltage change of about
100mV. In the following we will argue the voltage change is a consequence of the change
in area density of the membrane in a manner similar to the propagation of a piezoelectric
wave.

The membranes of biological membranes contain charged lipids. Depending on cell and
organelle the fraction of charged lipids is between 10% and 40% (some membranes are
especially rich in charged lipids, e.g. mitochondria). Typically, most of these charged
lipids are found on the inner membrane generating an electrical field. To make an
estimate over how large the potential change would be let us therefore assume that the
inner membrane of a nerve contains 40% charged lipids and the outer membrane contains
only a very small fraction of charged lipids (average of both leaflets 20%). We ignore the
contributions from proteins that clearly are also present. According to the Gouy-Chapman
theory for the potential of surfaces in electrolytes the potential of a charged surface at
high ionic strength is given by

v - & (4.13)
£,EK

This is the low potential limit of the Gouy-Chapman theory®. The dielectric constant in
vacuum is €=8.859-10"% C¥Jm and the relative permittivity e=80 for water. k is the
Debye constant that depends on the ionic strength. For a monovalent salt it is given by

26 (4.14)
K= [
£.ekT

where e=1.602-10"°C is the elementary charge and c¢ is the concentration of the
monovalent salt.

For ¢c=150mM NaCl the Debye constant assumes a value x=1.26-10° m' ..

For a fixed number of charged lipids the charge density, o, is different in the fluid and in
the gel phase of the lipids because the respective lipid areas are different by about 24%.
Therefore, one expects changes in the electrostatic potential of the membrane during a
propagating density pulse. In piezoelectrics, voltage changes and density changes are
tightly coupled. Such coupling between lateral density and electrostatic potential is also
known as electromechanical coupling. It is also linked to changes in capacitance.
Electromechanical coupling in membranes has first been proposed by Petrov® and has
been discussed by various authors to be relevant in hair cells**,

Discussed here the potential of the lipid membrane is discussed. A biological membrane
contains on average 50 weight percent of protein, which also carry charges. The total
potential of the inner and outer leaflet is the sum of lipid and protein contributions. The
contribution of the proteins will lead to an equilibrium resting potential of the total
membrane that is different from that of the pure lipid membrane. However, most likely
only the lipids undergo changes in area during the pulse.
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The potential of the inner membrane at the lipid surface under the above conditions and
the simplifying and somewhat arbitrary assumptions on lipid distribution is

\ngﬂuid =-114mV, ‘nglztmd = 0 mV, (4.15)
yr =-153mV, Yo, =0mV,

resulting in a voltage change of AW=40mV at the peak of the soliton. That is of the
same order than the voltage changes in the action potential (which is about 100mV). This
is a very rough estimate since the exact charge of the lipid membrane on both sides of the
membrane is not known and the protein charges have not been considered. However, it
seems as if the changes in the membrane arca during the action potential is of the right
order to account for the observed voltage changes during the action potential.
Furthermore, the membrane alters thickness during the action potential, thereby changing
the capacitance. The assumption of a constant capacitance as made by Hodgkin-Huxley
can therefore not be correct (cf. egs. 1 and 2).

Summarizing, it seems plausible that the mechanical soliton can generate voltage changes
that are on the order of those observed during the action potential. The exact values
remain to be determined by experiment.

5. Anesthesia

If one assumes that the soliton model for the nerve pulse is a valid description of the
nerve pulse containing its thermodynamics one immediately arrives at a quantitative
explanation for anesthesia®’.

Anesthesia as a tool for painless surgery by use of diethyl ether was first publicly
demonstrated in 1846 by William Morton from the Massachusetts General Hospital® .
This method was adopted within short time all over the world. Many other anesthetics
had been studied in the following decades, many of them being gases (e.g. nitrous oxide
= laughing gas), but also liquid anesthetics, e.g. the alkanols from ethanol to decanol. A
large variety of chemically very different molecules also cause anesthesia, e.g.
barbiturates or halogenated alkanes.

5.1. The Meyer-Overton rule

About 50 years after Morton, Meyer™ and Overton”® independently found that the critical
anesthetic dose of anesthetics is linearly proportional to their solubility in olive oil. The
critical anesthetic dose (or EDs) is defined as the bulk concentration of anesthetic in the
air (in this case equivalent to partial pressure) or in water at which 50% of the organisms
are motionless. Overton suggested that this finding relates to the solubility of the
molecules in the cell membrane whose structure was not known at the time. The Meyer-
Overton rule covers a large range of anesthetics with membrane partition coefficients
ranging over 5-6 orders of magnitude, from laughing gas (N,O) and the noble gas Xenon,
the liquid alcohols to modern anesthetics as liducaine. The partition coefficients of all
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these molecules lie within error on a straight line with slope —1 when plotted versus
critical anesthetic dose (see Fig. 8, left).

Even after more than 160 years the effect of anesthetics on organisms remains
unexplained. A number of functions of cells are affected by anesthetics, including the
membrane permeability, hemolysis, nerve function and the function of ion channels and
proteins totally unrelated to anesthesia, e.g. firefly luciferase. Since the most obvious
effect is on consciousness much of the research has focused on the action of anesthetics
on nerves. The Hodgkin-Huxley model' is based on the opening and closing of ion
channels and it seems straightforward to investigate the action of anesthetics on ion
channels. In fact, it has been observed that some ion channel properties are influences by
anesthetics. However, this effect is not quantitative and does not follow the Meyer-
Overton rule. Some channels are affect by some anesthetics, but not by others. As an
example, voltage gated sodium and potassium channels are slightly inhibited by
halogenated alkanes and ethers, but not by Xenon and nitrous oxide, although all these
anesthetics follow the Meyer-Overton rule in causing anesthesia® . It has to be concluded
that protein pictures of anesthesia so far are not satisfactory.

The Meyer-Overton rule suggests that the effect of anesthetics is independent of the
chemical nature of the molecule. Since the noble gas Xenon lies on the same straight line
as halothane or the liquid anesthetics one can basically rule out any specific binding
effects, which are the basis of the protein models (see also discussion).
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Figure 8: Left: The Meyer-Overton rule for volatile anesthetics showing the linear dependence of the oil/gas
partition coefficient and the critical anesthetic dose for man. The solid line represents a straight line with slope
—1. Data adapted from Ref. 8. Right: Lowering of the melting transition for a series of alkanols as a function
of the critical anesthetic dose for tadpoles. The solid line displays a slope of 1. Adapted from Ref. 17.
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5.2. Melting point depression

It is known that anesthetics have a pronounced effect on lipid melting transitions.
Typically, upon addition of anesthetics to the bilayers, the transitions shift to lower
temperatures in a linear relation with the anesthetic concentration. Heimburg and
Jackson’’ - have shown that this effect can well be described by a well-known
phenomenon called freezing point depression. If one assumes that anesthetics molecules
are readily soluble in fluid lipid membranes whereas they are insoluble in the gel

membrane one arrives at following law for the freezing point depression
2

AT, =—Bn .1
AH

where x, is the molar fraction of anesthetics in the fluid lipid membrane, Ty is the
melting point of the lipid membrane and AH is the melting enthalpy. The derivation of
this equation can be found in every physical chemistry textbook. The membrane
concentration of anesthetics at the critical dose, x,, is related to the partition coefficient
via

x, =P-(EDy)-V, (5.2)

where P is the partition coefficient between membrane and water, EDs; is the critical
anesthetic concentration, and V, is the molar volume of the lipids (about 0.75 1/mol).

The two equations above describe well the findings of many anesthetics. D. Kharakoz'’
has collected data for various anesthetics, some of which are displayed in Fig. 8 (right).
Shown is the concentration dependence of the melting point as a function of the critical
anesthetic dose for tadpoles. The melting point depression for all anesthetics (shown here
are alkanols) lie on a straight line when plotted versus the critical anesthetic dose. The
slope of the curve indicates that the shift of the transition temperature at critical
anesthetic dose is AT,=-0.6K for all anesthetics (that follow the Meyer-Overton rule)
independent of the chemical nature of the drug'™".

The Meyer-Overton rule therefore can be reformulated into: The anesthetic potency of
anesthetics is proportional to their ability to lower melting point of lipid membranes. It is
clear that within the soliton model for nerve pulses the melting points play an essential
role. The assumption in the following is that the lipid melting point plays an important
role in the control of biological membranes.

5.3. Pressure reversal

If one assumes that the lipid melting point is important for biological function and that
the effect of anesthetics is related to their effect on melting points, it is interesting to
compare this to other physical properties that also influence melting points, most notably
the influence of pressure. It has long been known that pressure influences the melting
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points of membranes by shifting them to higher temperatures. The pressure dependence
of such transitions is described by’

AT, =y, ApT, (5.3)

where 1v=7.8-10""m%N is a constant that is roughly the same for all lipids, lipid
mixtures and biological membranes™'’. The equation above indicates that a lipid
membrane with a T,;=314K (dipalmitoyl phosphatidylcholine) shifts its transition by 1 K
to higher temperatures upon application of 40.8 bar hydrostatic pressure. This indicates
that a pressure 24.5 bar should be sufficient to reverse the effect of anesthesia (which
corresponds to a shift by 0.6K to lower temperatures).
Pressure reversal of anesthesia has indeed been found, first by Johnson et al.’ If tadpoles
are anesthetized at 3 times the critical anesthetic dose of ethanol, they wake up upon
application of 150 bars of hydrostatic pressure. The pressure reversal of anesthesia is
well-documented in the literature.

5.4. Free energy of the membrane

The free energy difference between gel and fluid phase is the free energy that on has to
provide to shift the lipid membrane through its phase transition. It is given by

AG=AH- TAS:AH(Z”_T j 54

T[H
making use of the identity AS=AH/T,,. This equation indicates that the free energy
difference between the two phases is linearly dependent on the difference of the
experimental temperature, T, and the melting temperature, T,. Now, we have shown in
the previous section that Ty, is influenced by both anesthetics concentration and by
pressure. The melting temperature T, is changed by anesthetics and pressure in the

following manner

m.o

I x,+7,ApT,, (5-5)

m m,0

where T, is the transition temperature at atmospheric pressure and in the absence of
anesthetics. We finally obtain

T .-7T RT T
AG(x,Ap)=~AH| 22— " x +mM\p— |
G(x,,Ap) [ I, N mme’oj

If the melting transition of the lipid membrane is to play a relevant role for biological
function it follows that the biological function has to be the same when AG is the same.
Therefore, the condition for pressure reversal of anesthesia is

1 RT 1 RT
Ap = 7_A;:;O X, or ApEDSU = 7—_AI”;0 P(ED,)V,.
v v
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The numbers obtained from this equation are of very similar order than those obtained in
experiments. Data from octanol and DPPC membranes as well as the equations above
suggest that a pressure of 24.5 bar reverse anesthesia. The data from Johnson on tadpoles
in an ethanol solution corresponding to three times the anesthetic dose was reversed by
150 bars of pressure’. Our calculation yields 73.5 bars, assuming a membrane partition
coefficient for ethanol of 0.6 (which is subject to an error of the order of a factor 2).

6. Discussion

We have shown here that the Hodgkin-Huxley model' for the action potential is not a
satisfactory description of nervous impulse because it does not include the mechanical
and optical changes during the action potential. Further, it is clearly inconsistent with the
thermal response. The initial heat release and subsequent re-absorption studied by a
number of authors>®%33 rather points at a reversible physical phenomenon that
conserves entropy. In contrast, the Hodgkin-Huxley model is based on the flux of
currents through resistors that should heat the membrane independent of the nature of the
current and its direction. Therefore we formulated an alternative model based on the
known mechanical and thermal features of artificial and biological membranes. It was
shown that under physiological conditions stable mechanical solitons could propagate
that display reversible heat release, changes in membrane thickness, changes in
membrane order and reversible membrane potential changes. All these changes have been
observed in experiments. In particular the reversible heat release and the overall
conservation of entropy is a feature typical for sound propagation. It should be noted that
we use the term ‘sound propagation’ in general terms that includes all changes of the
thermodynamic variables that have to accompany a mechanical compression according to
Maxwell’s relations. In such a description the simultaneous occurrence of density
changes, voltage changes, and heat release is not surprising but a necessary consequence
of thermodynamics.

The Hodgkin-Huxley model seems to be in agreement with fluxes through ion channel
proteins. However, the currents through such channels are far from presenting an
explanation in the sense of a physical theory based on first principles. The conductances
of the channels contain many parameters that cannot be justified theoretically. Therefore,
their seemingly simple description relies on objects that contain all the unexplained
features in the form of parameters. For this reason Hodgkin and Huxley originally
recommended to treat their model with care. They state in their seminal paper from 1952
L 2 “The agreement must not be taken as evidence that our equations are anything more
than an empirical description of the time-course of the changes in permeability to sodium
and potassium. An equally satisfactory description of the voltage clamp data could no
doubt have been achieved with equations of very different form, which would probably
have been equally successful in predicting the electrical behavior of the membrane. ...
the success of the equations is no evidence in favour of the mechanism of permeability
change that we tentatively had in mind when formulating them.” In this paper we have in
fact shown that many changes can be explained by totally different physical mechanisms
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that result in similar equations for the pulse propagation. Hodgkin was clearly aware of
the problems generated by the finding of a reversible heat releases during the action
potential. He wrote in his textbook ‘The conduction of the nervous impulse’:"™ “In
thinking about the physical basis of the action potential perhaps the most important thing
to do at the present moment is to consider whether there are any unexplained
observations which have been neglected in an attempt to make the experiments fit into a
tidy pattern. ... perhaps the most puzzling observation is one made by A.V. Hill and his
collaborators Abbott and Howarth (1958).* ...Hill and his colleagues found that it (the
heat release) was diphasic and that an initial phase of heat liberation was followed by
one of heat absorption. ... a net cooling on open-circuit was totally unexpected and has
so far received no satisfactory explanation.” Howarth et al."”> concluded from their
finding of heat release and subsequent heat uptake: “Itr seems probable that the greater
part of the initial heat results from changes in the entropy of the nerve membane when it
is depolarized and repolarized.” Reversible entropy changes, however, are not a feature
of textbook pictures of nerve pulses.

Here, we followed Hodgkin’s suggestion and searched for ways to explain the reversible
heat. Slightly below physiological temperatures exist chain-melting transitions of the
membrane. It is interesting to note that the transitions are located at much lower
temperatures in the absence of the proteins. For instance, the melting point of E.coli lipid
extracts is about 20K lower than that of the native membrane in the presence of all their
lipids. Therefore, the presence of proteins seems to play an essential role in fine-tuning
the thermodynamics of the biological membrane. Besides their role as catalysts proteins
also possess chemical potentials that are thermodynamics variables. They contribute to
the behavior of membranes in a similar manner than temperature, pressure, pH and other
variables. The presence of the cooperative lipid transitions forms the basis for the
possibility of density pulses that propagate along the nerve axon. One short-coming of
our model is that it does not yet include a friction term even though one may expect that
due to the flux of lipids and changes in diameter of the nerve a proper hydrodynamic
treatment should yield in a dampening of the pulse. This problem is unanswered in the
context of our model, mainly due to the lack of detailed data on the mechanical changes
in nerves. However, experiments show that such density pulses propagate™ in real nerves
and the near-complete reversal of the heat'*'>*® suggests that friction is small. Within the
soliton model proteins do not play a role as channels or as active components. Rather,
they tune the thermodynamics of the membrane.

An important question is how such a mechanical soliton can be generated in a membrane.
Since within the pulse the soliton pushes the membrane through its chain melting
transition, everything that moves membranes through transitions should be able to
generate a pulse. All physical changes that push the transition away from physiological
conditions should inhibit pulses. As an example, local cooling of a nerve has been shown
to induce nerve firing, whereas temperature increase inhibits pulse conduction's. Due to
the electromechanical coupling described in section 4.4. Changes in trans-membrane
voltage are also potentially able to generate pulses. Further, local decrease of pH,
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increase in pressure or increase in calcium concentration will display the potential to
trigger pulses because all of these changes increase the phase transitions of
biomembranes.

Most interestingly, anesthetics will inhibit pulse generation due to their property of
lowering phase transitions. Since ion channels do not play an active role in our
description for nerve pulses it is obvious that the action of anesthetics requires a different
explanation that their action on ion channels. The famous 100-year old Meyer-Overton
correlation®* states that the action of anesthetics is within error exactly proportional to
their solubility in lipid membranes. This law is valid over 6 orders of magnitude in the
membrane/air and membrane/water partition coefficient. This law is still a very elegant
and valid mean to determine the effectiveness of an anesthetic®. It basically excludes that
the action of anesthetics can be linked to specific binding of the drug to a receptor. The
argument is simple: The binding of two molecules is described by the free energy, which
is a function of state. If the action of anesthetics is exactly proportional to the
concentration of drugs in the membrane independent on chemical nature of the drug as
follows from the Meyer-Overton correlation, the binding constant of all anesthetics to
receptors must be identical, including that of the noble gas Xenon. Since noble gases
cannot bind specifically, the same has to be concluded for all other anesthetics that follow
the Meyer-Overton rule. The experimental finding is that halogenated alkanols act very
differently on ion channels than Xenon or nitrous oxide. Thus, protein models are clearly
not consistent with the well-documented Meyer-Overton correlation. Although protein
models momentarily are quite popular, they cannot fulfill the basic thermodynamic
requirements for all anesthetics that follow the Meyer-Overton correlation. Due to the
above argument it is unlikely that the action on ion channels is related to anesthesia.

Here, we have outlined the thermodynamic theory of how anesthetics influence the phase
behavior of lipid membranes via a well-known unspecific phenomenon called freezing-
point depression. It states the lowering of the melting point is proportional to the
membrane concentration of the anesthetic drug. Thereby, we attribute a physical meaning
to the Meyer-Overton rule that has not been provided by Overton himself. By this
mechanism anesthetics alter the features of propagating solitons in a quantitative manner.
More specificaily, they alter the amount of free energy that has to be provided to generate
a pulse. We found that it is linearly dependent on the distance between physiological
temperature and the transition in the nerve membrane. This approach allows finding strict
thermodynamics relations between various thermodynamics variables, including the
pressure reversal of anesthesia that can be calculated in quantitative terms.’

It seems very unlikely that all these quantitative correlations can be found experimentally
without thermodynamics being an essential player in the description of both the action
potential and the action of anesthesia. In contrast, simple thermodynamics seems to
contain a complete description of such phenomena.
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